Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Biomimetics (Basel) ; 9(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667255

RESUMEN

Biomaterials are an important and integrated part of modern medicine, and their development and improvement are essential. The fundamental requirement of a biomaterial is found to be in its interaction with the surrounding environment, with which it must coexist. The aim of this study was to assess the biological characteristics of hydroxyapatite (HAp)-based coatings doped with Mg and Zn ions obtained by the pulsed galvanostatic electrochemical method on the surface of pure titanium (cp-Ti) functionalized with titanium dioxide nanotubes (NTs TiO2) obtained by anodic oxidation. The obtained results highlighted that the addition of Zn or Mg into the HAp structure enhances the in vitro response of the cp-Ti surface functionalized with NT TiO2. The contact angle and surface free energy showed that all the developed surfaces have a hydrophilic character in comparison with the cp-Ti surface. The HAp-based coatings doped with Zn registered superior values than the ones with Mg, in terms of biomineralization, electrochemical behavior, and cell interaction. Overall, it can be said that the addition of Mg or Zn can enhance the in vitro behavior of the HAp-based coatings in accordance with clinical requirements. Antibacterial tests showed that the proposed HAp-Mg coatings had no efficiency against Escherichia coli, while the HAp-Zn coatings registered the highest antibacterial efficiency.

2.
Adv Healthc Mater ; : e2303888, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451476

RESUMEN

Current vascular access options require frequent interventions. In situ tissue engineering (TE) may overcome these limitations by combining the initial success of synthetic grafts with long-term advantages of autologous vessels by using biodegradable grafts that transform into autologous vascular tissue at the site of implantation. Scaffolds (6 mm-Ø) made of supramolecular polycarbonate-bisurea (PC-BU), with a polycaprolactone (PCL) anti-kinking-coil, are implanted between the carotid artery and jugular vein in goats. A subset is bio-functionalized using bisurea-modified-Stromal cell-derived factor-1α (SDF1α) derived peptides and ePTFE grafts as controls. Grafts are explanted after 1 and 3 months, and evaluated for material degradation, tissue formation, compliance, and patency. At 3 months, the scaffold is resorbed and replaced by vascular neo-tissue, including elastin, contractile markers, and endothelial lining. No dilations, ruptures, or aneurysms are observed and grafts are successfully cannulated at termination. SDF-1α-peptide-biofunctionalization does not influence outcomes. Patency is lower in TE grafts (50%) compared to controls (100% patency), predominantly caused by intimal hyperplasia. Rapid remodeling of a synthetic, biodegradable vascular scaffold into a living, compliant arteriovenous fistula is demonstrated in a large animal model. Despite lower patency compared to ePTFE, transformation into autologous and compliant living tissue with self-healing capacity may have long-term advantages.

3.
Biomater Adv ; 159: 213828, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479240

RESUMEN

Due to organ donor shortages, long transplant waitlists, and the complications/limitations associated with auto and allotransplantation, biomaterials and tissue-engineered models are gaining attention as feasible alternatives for replacing and reconstructing damaged organs and tissues. Among various tissue engineering applications, bone tissue engineering has become a promising strategy to replace or repair damaged bone. We aimed to provide an overview of bioactive ceramic scaffolds in bone tissue engineering, focusing on angiogenesis and the effect of different biofunctionalization strategies. Different routes to angiogenesis, including chemical induction through signaling molecules immobilized covalently or non-covalently, in situ secretion of angiogenic growth factors, and the degradation of inorganic scaffolds, are described. Physical induction mechanisms are also discussed, followed by a review of methods for fabricating bioactive ceramic scaffolds via microfabrication methods, such as photolithography and 3D printing. Finally, the strengths and weaknesses of the commonly used methodologies and future directions are discussed.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Angiogénesis , Materiales Biocompatibles , Cerámica/uso terapéutico , Cerámica/química
4.
Heliyon ; 10(5): e26943, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449639

RESUMEN

The 21st century information and communication industries have played the pivotal role of bio-sensing technologies, refining privacy policies for human performance, facilitating scientific innovation, shaping e-governance, and reinforcing public confidence using nanotechnology. Human body is a thermodynamic heat engine in providing effective mechanical work as a function of psyche, conventional fuel transformation into enriched protein meal, and balancing of work-life fulcrum. The triboelectric effect of rubbing surfaces, interfaces, and interphases is invincible from the large field of the planet to nanodomains.

5.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475224

RESUMEN

This work focuses on demonstrating the working principle of inkjet-printed Au nanoparticle (NP) two-layer Gigahertz (2.6 GHz) microwave split-ring resonators (SRRs) as a novel platform for the detection of analytes on flexible substrates. In contrast to the standard fabrication of split-ring resonator biosensors using printed circuit board technology, which results in a seven-layer system, the resonators in this work were fabricated using a two-layer system. A ground plane is embedded in the SRR measurement setup. In this method, a microwave electromagnetic wave is coupled into the Au SRR via an inkjet-printed Cu-NP stripline that is photonically sintered. This coupling mechanism facilitates the detection of analytes by inducing resonance shifts in the SRR. In this study, the functionality of the printed sensors was demonstrated using two different Au functionalization processes, firstly, with HS-PEG7500-COOH, and, secondly, with protein G with an N-terminal cysteine residue. The sensing capabilities of the printed structures are shown by the attachment of biomolecules to the SRR and the measurement of the resulting resonance shift. The experiments show a clear shift of the resonance frequency in the range of 20-30 MHz for both approaches. These results demonstrate the functionality of the simplified printed two-layer microwave split-ring resonator for use as a biosensor.

6.
Adv Healthc Mater ; : e2304250, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38444191

RESUMEN

Nanoparticle (NP) surface functionalization with proteins, including monoclonal antibodies (mAbs), mAb fragments, and various peptides, has emerged as a promising strategy to enhance tumor targeting specificity and immune cell interaction. However, these methods often rely on complex chemistry and suffer from batch-dependent outcomes, primarily due to limited control over the protein orientation and quantity on NP surfaces. To address these challenges, a novel approach based on the supramolecular assembly of two peptides is presented to create a heterotetramer displaying VH Hs on NP surfaces. This approach effectively targets both tumor-associated antigens (TAAs) and immune cell-associated antigens. In vitro experiments showcase its versatility, as various NP types are biofunctionalized, including liposomes, PLGA NPs, and ultrasmall silica-based NPs, and the VH Hs targeting of known TAAs (HER2 for breast cancer, CD38 for multiple myeloma), and an immune cell antigen (NKG2D for natural killer (NK) cells) is evaluated. In in vivo studies using a HER2+ breast cancer mouse model, the approach demonstrates enhanced tumor uptake, retention, and penetration compared to the behavior of nontargeted analogs, affirming its potential for diverse applications.

7.
J Biomater Sci Polym Ed ; 35(6): 880-897, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346177

RESUMEN

The aim of the in vitro study was to asses the effect of hyaluronate in conjunction with bovine derived xenografts on the viability, proliferation on day 4, 7 and 10, expression of early osteogenic differentiation marker Alkaline phosphatase on day 14 and 21, collagen, calcium deposition on day 14, 21 and 28 and cellular characteristics, as assessed through live cell image analysis, confocal laser scanning microscopy and scanning electron microscopy, in primary human osteoblasts compared to three bovine xenografts without hyaluronate. All experiments were performed in triplicates. Data were compared between groups and timepoints using one-way analysis of variance (ANOVA). Bonferroni post hoc test were further used for multiple comparison between groups (p < .05) An increase in cell viability (p < .05) and enhanced ALP activity was observed in all xenografts. Specimens containing hyaluronate showed a highest significant difference (23755 ± 29953, p < .0001). The highest levels of calcium (1.60 ± 0.30) and collagen (1.92 ± 0.09, p < .0001) deposition were also observed with hyaluronate loaded groups. The osteoblasts were well attached and spread on all xenograft groups. However, a higher number of cells were observed with hyaluronate functionalized xenograft (76.27 ± 15.11, (p < .0001) in live cell image analysis and they migrated towards the graft boundaries. The biofunctionalization of xenografts with hyaluronate improves their in vitro performance on human osteoblasts. This suggests that hyaluronate might be able to improve the bone regeneration when using such xenografts.


Asunto(s)
Calcio , Osteogénesis , Humanos , Animales , Bovinos , Osteogénesis/fisiología , Xenoinjertos , Calcio/metabolismo , Diferenciación Celular , Osteoblastos , Colágeno/farmacología , Glicosaminoglicanos , Proliferación Celular , Fosfatasa Alcalina/metabolismo
8.
Biomater Adv ; 158: 213768, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38237320

RESUMEN

Despite the clinical prevalence of various bone defect repair materials, a full understanding of their influence on bone repair and regeneration remains elusive. This study focuses on poly(acrylamide) (PAAm) hydrogels, popular 2D model substrates, which have regulable mechanical properties within physiological. However, their bio-inert nature requires surface biofunctionalization to enhance cell-material interactions and facilitate the study of bone repair mechanisms. We utilized PAAm hydrogels of varying stiffness (18, 76 and 295 kPa), employed sulfosuccinimidyl-6-(4'-azido-2'-nitropheny-lamino) hexanoate (sulfo-SANPAH) and N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride/N-hydroxysuccinimidyl acrylate (EDC/NHS) as crosslinkers, and cultured macrophages, endothelial cells, and bone mesenchymal stem cells on these hydrogels. Our findings indicated that sulfo-SANPAH's crosslinking efficiency surpassed that of EDC/NHS, irrespective of pore size and stiffness. Importantly, we observed that the stiffness and surface biofunctionalization method of hydrogels significantly impacted cell adhesion and proliferation. The collagen-modified hydrogels by EDC/NHS strategy failed to support the normal biological behavior of bone mesenchymal stem cells and hindered endothelial cell spreading. In contrast, these modified hydrogels by the sulfo-SANPAH method showed good cytocompatibility with the three types of cells. This study underscores the critical role of appropriate conjugation strategies for PAAm hydrogels, providing valuable insights for hydrogel surface modification in bone repair and regeneration research.


Asunto(s)
Resinas Acrílicas , Azidas , Regeneración Ósea , Células Endoteliales , Succinimidas , Hidrogeles/farmacología
9.
Int J Biol Macromol ; 260(Pt 2): 129379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242410

RESUMEN

Advances in polymer-based nanocomposites have revolutionized biomedical applications over the last two decades. Heparin (HP), being a highly bioactive polymer of biological origin, provides strong biotic competence to the nanocomposites, broadening the horizon of their applicability. The efficiency, biocompatibility, and biodegradability properties of nanomaterials significantly improve upon the incorporation of heparin. Further, inclusion of structural/chemical derivatives, fractionates, and mimetics of heparin enable fabrication of versatile nanocomposites. Modern nanotechnological interventions have exploited the inherent biofunctionalities of heparin by formulating various nanomaterials, including inorganic/polymeric nanoparticles, nanofibers, quantum dots, micelles, liposomes, and nanogels ensuing novel functionalities targeting diverse clinical applications involving drug delivery, wound healing, tissue engineering, biocompatible coatings, nanosensors and so on. On this note, the present review explicitly summarises the recent HP-oriented nanotechnological developments, with a special emphasis on the reported successful engagement of HP and its derivatives/mimetics in nanocomposites for extensive applications in the laboratory and health-care facility. Further, the advantages and limitations/challenges specifically associated with HP in nanocomposites, undertaken in this current review are quintessential for future innovations/discoveries pertaining to HP-based nanocomposites.


Asunto(s)
Nanocompuestos , Nanopartículas , Heparina , Ingeniería de Tejidos , Nanocompuestos/química , Polímeros
10.
Bioact Mater ; 34: 436-462, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282967

RESUMEN

Mesoporous bioactive glasses (MBGs), which belong to the category of modern porous nanomaterials, have garnered significant attention due to their impressive biological activities, appealing physicochemical properties, and desirable morphological features. They hold immense potential for utilization in diverse fields, including adsorption, separation, catalysis, bioengineering, and medicine. Despite possessing interior porous structures, excellent morphological characteristics, and superior biocompatibility, primitive MBGs face challenges related to weak encapsulation efficiency, drug loading, and mechanical strength when applied in biomedical fields. It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies, miscellaneous metal species, and their conjugates into the material surfaces or intrinsic mesoporous networks. The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications, such as stimuli-responsive drug delivery, with exceptional in-vivo performances. In view of the above, we outline the fabrication process of calcium-silicon-phosphorus based MBGs, followed by discussions on their significant progress in various engineered strategies involving surface functionalization, nanostructures, and network modification. Furthermore, we emphasize the recent advancements in the textural and physicochemical properties of MBGs, along with their theranostic potentials in multiple cancerous and non-cancerous diseases. Lastly, we recapitulate compelling viewpoints, with specific considerations given from bench to bedside.

11.
Macromol Biosci ; 24(3): e2300308, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37931180

RESUMEN

Nanofibrous scaffolds have attracted much attention in bladder reconstruction approaches due to their excellent mechanical properties. In addition, their biological properties can be improved by combination with biological materials. Taking into account the advantages of nanofibrous scaffolds and decellularized extracellular matrix (dECM) in tissue engineering, scaffolds of poly-L-lactic acid (PLLA) coated with decellularized human amnion membrane (hAM) or sheep bladder (SB)-derived ECM proteins are developed (amECM-coated PLLA and sbECM-coated PLLA, respectively). The bladder regenerative potential of modified electrospun PLLA scaffolds is investigated in rabbits. The presence of ECM proteins is confirmed on the nanofibers' surface. Coating the surface of the PLLA nanofibers improves cell adhesion and proliferation. Histological and immunohistochemical evaluations show that rabbits subjected to cystoplasty with a multilayered PLLA scaffold show de novo formation and maturation of the multilayered urothelial layer. However, smooth muscle bundles (myosin heavy chain [MHC] and α-smooth muscle actin [α-SMA] positive) are detected only in ECM-coated PLLA groups. All groups show no evidence of a diverticulumor fistula in the urinary bladder. These results suggest that the biofunctionalization of electrospun PLLA nanofibers with ECM proteins can be a promising option for bladder tissue engineering. Furthermore, hAM can also replace animal-sourced ECM proteins in bladder tissue regeneration approaches.


Asunto(s)
Nanofibras , Andamios del Tejido , Humanos , Conejos , Animales , Ovinos , Andamios del Tejido/química , Nanofibras/química , Vejiga Urinaria , Amnios , Ingeniería de Tejidos/métodos , Poliésteres/farmacología , Poliésteres/química , Proteínas de la Matriz Extracelular , Músculo Liso
12.
ACS Appl Bio Mater ; 7(1): 59-79, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38115212

RESUMEN

Identification of correct blood types holds paramount importance in understanding the pathophysiological parameters of patients, therapeutic interventions, and blood transfusion. Considering the wide applications of blood typing, the requirement of centralized laboratory facilities is not well suited on many occasions. In this context, there has been a significant development of such blood typing devices on different microfluidic platforms. The advantages of these microfluidic devices offer easy, rapid test protocols, which could potentially be adapted in resource-limited settings and thereby can truly lead to the decentralization of testing facilities. The advantages of pump-free liquid transport (i.e., low power consumption) and biodegradability of paper substrates (e.g., reduction in medical wastes) make it a more preferred platform in comparison to other microfluidic devices. However, these devices are often coupled with some inherent challenges, which limit their potential to be used on a mass commercial scale. In this context, our Review offers a succinct summary of the recent development, especially to understand the importance of underlying facets for long-term sustainability. Our Review also delineates the role of integration with digital technologies to minimize errors in interpreting the readouts.


Asunto(s)
Tipificación y Pruebas Cruzadas Sanguíneas , Microfluídica , Humanos , Dispositivos Laboratorio en un Chip
13.
Int J Biol Macromol ; 258(Pt 2): 129039, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154704

RESUMEN

Compared with traditional tedious organic solvent-assisted separation process in natural medicinal chemistry, cytomembrane (CM) fishing technique became a more appealing and greener choice for screening bioactive components from natural products. However, its large-scale practical value was greatly weakened by the easy fall-off of CMs from magnetic supports, rooted in the instability of common Fe3O4 particles and their insufficient interaction with CMs. In this research, a new green biostable platform was developed for drug screening through the integration of hyperbranched quaternized hydrothermal magnetic carbon spheres (HQ-HMCSs) and CMs. The positive-charged HQ-HMCSs were constructed by chitosan-based hydrothermal carbonization onto Fe3O4 nanospheres and subsequent aqueous hyperbranching quaternization with 1,4-butanediol diglycidyl ether and methylamine. The strong interaction between HQ-HMCSs and CMs was formed via electrostatic attraction of HQ-HMCSs to negative-charged CMs and covalent linkage derived from the epoxy-amine addition reactions. The chemically stable HMCSs and its integration with CMs contributed to dramatically higher stability and recyclability of bionic nanocomposites. With the fishing of osteoblast CMs integrated HQ-HMCSs, two novel potential anti-osteoporosis compounds, narcissoside and beta-ionone, were discovered from Hippophae rhamnoides L. Enhanced osteoblast proliferation, alkaline phosphatase, and mineralization levels proved their positive osteogenesis effects. Preliminary pharmacological investigation demonstrated their potential action on membrane proteins of estrogen receptor alpha and insulin-like growth factor 1. Furthermore, beta-ionone showed apparent therapeutic effects on osteogenic lesions in zebrafish. These results provide a green, stable, cost-efficient, and reliable access to rapid discovery of drug leads, which verifiably benefits the design of nanocarbon-based biocomposites with increasingly advanced functionality.


Asunto(s)
Productos Biológicos , Quitosano , Nanosferas , Norisoprenoides , Animales , Quitosano/química , Nanosferas/química , Pez Cebra , Carbono/química , Fenómenos Magnéticos
14.
Rev. colomb. biotecnol ; 25(2)dic. 2023.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1535728

RESUMEN

En el presente trabajo, se biofuncionalizaron con heparina películas fabricadas a base de fibroína (SF) y polivinil alcohol (PVA) utilizando dos técnicas diferentes, la primera por acople de carbodiimida y la segunda por aprovechamiento de interacciones electrostáticas, buscando conseguir un comportamiento antitrombogénico en la superficie de las películas fabricas para su potencial uso como biomateriales para la fabricación de implantes cardiovasculares. Las muestras biofuncionalizadas fueron sometidas a una prueba de coagulación de sangre para verificar el éxito de dicha biofuncionalización. Los resultados mostraron que las muestras biofuncionalizadas por acople de carbodiimida, además de presentar una actividad antitrombogénica superior a las biofuncionalizadas por aprovechamiento de interacciones electrostáticas, presentaban valores de ángulos de contacto más cercanos a los de los materiales para la fabricación de implantes cardiovasculares, y que también, la biofuncionalización no afecta significativamente las propiedades mecánicas y superficiales de las películas fabricadas.


In the present work, fibroin, and polyvinyl alcohol (PVA) - based films were biofunctionalized using two different techniques, the first by carbodiimide coupling and second by exploiting electrostatic interactions, seeking to achieve antithrombogenic behavior on the surface of the manufactured films for their potential use as biomaterials for the manufacture of cardiovascular implants. The biofunctionalized samples were submitted to the blood clotting test to verify the success of said biofunctionalization. The results showed that the samples biofunctionalized by carbodiimide coupling, in addition to presenting a higher antithrombogenic activity than those biofunctionalized by taking advantage of electrostatic interactions, presented contact angles values closer to those of the materials for the manufacture of cardiovascular implants, and that also, the biofunctionalization does not significantly affect the mechanical and surface properties of the fabricated films

15.
ACS Appl Mater Interfaces ; 15(48): 55346-55357, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37982803

RESUMEN

We present a new platform based on hydrogel beads for multiplex analysis that can be fabricated, barcoded, and functionalized in a single step using a simple microfluidic assembly and a photo-cross-linking process. The beads are generated in a two-phase flow fluidic system and photo-cross-linking of the polymer in the aqueous phase by C,H insertion cross-linking (CHic). The size and shape of the hydrogel particles can be controlled over a wide range by fluidic parameters. During the fabrication of the beads, they are barcoded by using physical and optical barcoding strategies. Magnetic beads and fluorescent particles, which allow identification of the production batch number, are added simultaneously as desired, resulting in complex, multifunctional beads in a one-step reaction. As an example of biofunctionalization, Borrelia antigens were immobilized on the beads. Serum samples that originated from infected and non-infected patients could be clearly distinguished, and the sensitivity was as good as or even better than ELISA, the state of the art in clinical diagnostics. The ease of the one-step production process and the wide range of barcoding parameters offer strong advantages for multiplexed analytics in the life sciences and medical diagnostics.


Asunto(s)
Hidrogeles , Humanos , Ensayo de Inmunoadsorción Enzimática
16.
J Funct Biomater ; 14(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37888185

RESUMEN

Additively manufactured (AM) porous titanium implants may have an increased risk of implant-associated infection (IAI) due to their huge internal surfaces. However, the same surface, when biofunctionalized, can be used to prevent IAI. Here, we used a rat implant infection model to evaluate the biocompatibility and infection prevention performance of AM porous titanium against bioluminescent methicillin-resistant Staphylococcus aureus (MRSA). The specimens were biofunctionalized with Ag nanoparticles (NPs) using plasma electrolytic oxidation (PEO). Infection was initiated using either intramedullary injection in vivo or with in vitro inoculation of the implant prior to implantation. Nontreated (NT) implants were compared with PEO-treated implants with Ag NPs (PT-Ag), without Ag NPs (PT) and infection without an implant. After 7 days, the bacterial load and bone morphological changes were evaluated. When infection was initiated through in vivo injection, the presence of the implant did not enhance the infection, indicating that this technique may not assess the prevention but rather the treatment of IAIs. Following in vitro inoculation, the bacterial load on the implant and in the peri-implant bony tissue was reduced by over 90% for the PT-Ag implants compared to the PT and NT implants. All infected groups had enhanced osteomyelitis scores compared to the noninfected controls.

17.
Heliyon ; 9(9): e19594, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810162

RESUMEN

Biofunctionalization of an implant using functional ceramics with exceptional electrical characterization, such as BaTiO3 and SrTiO3, has gained considerable attention in creating a composite coating with bio-polymer to activate metal implant surfaces for bone tissue engineering applications and, at the same time, resist bacterial infection. A Ti-Zr alloy sample was created by powder technology, and then a coating was applied using the electrospinning technique. Individually, nanopowders of ceramic compounds such as nBaTiO3 and nSrTiO3 were added to a blend of polycaprolactone and chitosan to create composite solutions that could be converted into a nanofibrous coating layer using the electrospinning technique. The samples were analyzed for their morphology, chemical composition, surface roughness, dielectric constant, and wettability. The techniques employed were SEM, EDS, FTIR, an LCR meter, and a contact angle goniometer. The samples' cytocompatibility was assessed by examining the cell viability, ALP activity, proliferation, and attachment of MC3T3-E1 osteoblast cells on both coated and uncoated sample surfaces.The bacterial resistance assays were conducted against Staphylococcus aureus and Streptococcus mutans. The findings demonstrate a notable enhancement in the biocompatibility of the coated specimens following a week of cellular cultivation. The composite coating containing piezoelectric BaTiO3 has a dielectric constant Ɛr (16) close to dry human bone at 100HZ frequency. Cell proliferation increases dramatically with time in coated samples, and the improvement approaches 125.16% for (BA1) and 111.38% for (SR1) as compared to uncoated Ti-25Zr sample. Cell viability percentage for the coated samples is compared with bare Ti-25Zr, which has an 80.52 ± 1.97% crucial increase, while (BA1) has 181.63 ± 17.87 and (SR1) 170.09 ± 18.12%. No zone of inhibition was detected in the bacterial resistance test for the uncoated sample, while the samples with composite coating show an adequate and comparable inhibitory zone. The composite nano-fiber has a strong biocompatibility, and the coating process is simple and economical, holding potential for use in orthodontic and orthopedic bone regeneration applications.

18.
Nanomaterials (Basel) ; 13(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764625

RESUMEN

The functionalization of AuNPs with different biological elements was achieved to investigate their possibility in biomedical applications such as drug delivery, vaccine development, sensing, and imaging. Biofunctionalized AuNPs are pursued for applications such as drug delivery, vaccine development, sensing, and imaging. In this study, AuNPs with diameters of 20 nm were functionalized with lipoic acid, mannose, or the cRGD peptide. By using UV-vis spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and scanning tunneling microscopy techniques, we showed that AuNPs can be functionalized by these biomolecules in a reliable way to obtain conjugates to explore potential biomedical applications. In particular, we demonstrate that the STM technique can be employed to analyze biofunctionalized AuNPs, and the obtained information can be valuable in the design of biomedical applications.

19.
ACS Appl Bio Mater ; 6(10): 4290-4303, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37721636

RESUMEN

Multifunctional biohybrid nanofibers (NFs) that can simultaneously drive various cellular activities and confer antibacterial properties are considered desirable in producing advanced wound healing materials. In this study, a bionanohybrid formulation was processed as a NF wound dressing to stimulate the adhesion and proliferation of fibroblast and endothelial cells that play a major role in wound healing. Polyacrylonitrile (PAN) electrospun NFs were hydrolyzed using NaOH and biofunctionalized with l-carnosine (CAR), a dipeptide which could later biosynthesize zinc oxide (ZnO) nanoparticles (NPs) on the NFs surface. The morphological study verified that ZnO NPs are uniformly distributed on the surface of CAR/PAN NFs. Through EDX and XRD analysis, it was validated that the NPs are composed of ZnO and/or ZnO/Zn(OH)2. The presence of CAR and ZnO NPs brought about a superhydrophilicity effect and notably raised the elastic modulus and tensile strength of Zn-CAR/PAN NFs. While CAR ligands were shown to improve the viability of fibroblast (L929) and endothelial (HUVEC) cells, ZnO NPs lowered the positive impact of CAR, most likely due to their repulsive negative surface charge. A scratch assay verified that CAR/PAN NFs and Zn-CAR/PAN NFs aided HUVEC migration more than PAN NFs. Also, an antibacterial assay implied that CAR/PAN NFs and Zn-CAR/PAN NFs are significantly more effective in inhibiting Staphylococcus aureus (S. aureus) than neat PAN NFs are (1000 and 500%, respectively). Taken together, compared to the neat PAN NFs, CAR/PAN NFs with and without the biosynthesized ZnO NPs can support the cellular activities of relevance for wound healing and inactivate bacteria.


Asunto(s)
Carnosina , Nanofibras , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Carnosina/farmacología , Nanofibras/química , Staphylococcus aureus , Biomimética , Células Endoteliales , Cicatrización de Heridas , Nanopartículas/química , Antibacterianos/química
20.
ACS Nano ; 17(18): 17908-17919, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676036

RESUMEN

Only a minority of patients respond positively to cancer immunotherapy, and addressing this variability is an active area of immunotherapy research. Infiltration of tumors by immune cells is one of the most significant prognostic indicators of response and disease-free survival. However, the ability to noninvasively sample the tumor microenvironment for immune cells remains limited. Imaging in the near-infrared-II region using rare-earth nanocrystals is emerging as a powerful imaging tool for high-resolution deep-tissue imaging. In this paper, we demonstrate that these nanoparticles can be used for noninvasive in vivo imaging of tumor-infiltrating T-cells in a highly aggressive melanoma tumor model. We present nanoparticle synthesis and surface modification strategies for the generation of small, ultrabright, and biocompatible rare-earth nanocrystals necessary for deep tissue imaging of rare cell types. The ability to noninvasively monitor the immune contexture of a tumor during immunotherapy could lead to early identification of nonresponding patients in real time, leading to earlier interventions and better outcomes.


Asunto(s)
Melanoma , Metales de Tierras Raras , Nanopartículas , Humanos , Linfocitos T , Inmunoterapia , Diagnóstico por Imagen , Nanopartículas/uso terapéutico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...